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Abstract. Structures with isothermal cores have been discussed in great detail in the 
literature, but for all these structures the value of dP/dp jumps at the core-envelope 
boundary. In this paper the authors have chosen cores with extreme relativistic conditions 
(dP/dp = 1 and 5). For such cores one can ensure the continuity of dP/dp along with that of 
pressure, density, eh and ey. Choosing polytropic envelopes, which have positive dis- 
tribution function for all possible energies provided that dP/dp s 1, the central redshifts 
have been calculated. One can obtain any high value of central redshift. The structures are 
pulsationally stable for Z c S  1.43 when the polytropic index n = 1. For n < 1, one may 
obtain a maximum central redshift of 4.75 for pulsationally stable structures. Next, an 
envelope in which the density is a specific function of r is chosen. By assuming the surface 
density to he equal to 2 x l O I 4  g cm-3, the mass of neutron stars has been calculated. The 
maximum mass of 4.7Mo is consistent with the results of other authors. 

1. Introduction 

Bondi (1964) discussed structures with isothermal cores and envelopes having (i) 
constant density and (ii) an equation of state dP/dp = 1. Das and Narlikar (1979) 
extended the work of Bondi (1 964) by taking different isothermal cores and envelopes 
with equation of state dp = n dP. Durgapal etal(1980a,b) used models with isothermal 
core and varying density to obtain a maximum value for the central redshift in 
pulsationally stable structures. With his model Bondi (1964) obtained a surface 
redshift, 2, = 0.62. 

In all the models mentioned above the continuity of pressure P, density p, e”  and eh 
is assured. However, the value of dP/dp jumps up at the boundary of core and 
envelope. This seems unrealistic and models become artificial. In the present paper the 
authors have developed a model with an extreme relativistic core (the equation of state 
is given by dP/dp = 1 and 4 respectively), such that at the core-envelope boundary the 
continuity of P, p, e”, eh and dP/dp is assured. 

One may say that, for a cluster structure, continuity of dP/dp is not necessary and 
the models obtained with an isothermal core are equally valid. But a cluster structure is 
possible only when the model considered has a positive distribution function. All the 
models mentioned above have a negative distribution function for quite a large range of 
energy (Das 1976, Durgapal et al 1979a,b,c). In this paper we have obtained the 
central redshift only for those structures which have a positive distribution function for 
all values of energy. Fackerell(l968) has given a method for obtaining the distribution 
function F for a spherical configuration with isotropic pressure, and has given internal 
solutions (that is, known values of p, P, e’ and e’). Further, he has shown that 
polytropic gas spheres have positive distribution function when the velocity of sound 
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v s  = (dP/dp)1’2 G 1. For this reason we have chosen the polytropic equation of state in 
the envelope such that dP/dp G 1. 

As for compact objects, the value of dP/dp must be continuous at the boundary and 
also dP/dp s 1. We have not chosen an envelope with constant density because, for 
p =constant, we have dP/dp = --CO. Hence, we have assumed a specific density 
distribution in the envelope given by p = po(1- r N / K r ) ,  and only those solutions are 
considered in which dP/dp s 1 and the density is non-negative. 

M C Durgapal, P S Rawat and R Bannerji 

2. Field equations and their solutions 

The general assumptions made for solving the Einstein field equations are the same as 
those given by Bondi (1964). For a spherically symmetric and static metric, 

ds2 = e”  dt2 -eh dr2 - r2 de2 - r2 sin2 8 d4’. (1) 

8 x P  = e-h(v’/r + l / r2)  - l / r 2 ,  (2) 

8xP=e-’[v1’/2+ v ’ 2 / 4 - A ’ y ’ / 4 + ( y ’ - h ’ ) / 2 r ] ,  (3) 
8xp = e-”(A’/r - l / r2 )  + l / r2 ,  (4) 

Here v and A are functions of r alone. The resulting field equations are 

where primes denote differentiation with respect to r. Equations (2)-(4) can be 
simplified to give 

P’= -v’(P+p)/2, ( 5 )  

where 

m = ior 4xpr2 dr. 

Equation (6) is the well known LOV equation for hydrostatic equilibrium. 

2.1. Core solutions: equation of state dP/dp = K 

For the equation of state dP/dp = K, we have 

P = K ( p  -a) (8) 
where a is the integration constant. For the core solutions we have chosen K = 1 and f 
respectively. The coupled equations (6)-(8) are solved numerically for different values 
of a. We have obtained values of P, p, eh, m and dP/dr at each value of r for a constant 
interval Ar. 

To obtain solutions in the envelope, we first determine the boundary conditions at 
the core-envelope boundary r = ri such that each of the parameters P, p, eh, m, dP/dr 
and dP/dp is continuous at the boundary. For this we need the equation of state in the 
envelope. After obtaining the respective values of these parameters at the boundary 
(that is, values of Pi, pi, e’’, mi, Pi) and taking them to be the initial values, the coupled 
equations (6), (7) and the equation of state in the envelope can be solved numerically till 
the pressure vanishes. The value of r = a where P = 0 is the radius of the entire 
configuration. 
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2.2. A polytropic envelope 

The equation of a polytrope with polytropic index n is given by 
l + l / n  P = Kip 

where K1 is a constant. Equation (9) gives 

dP/dp = [(n + l)/n]Klp'/" and (P/P) =Kip"" 

PIP = [n/(n + l)l(dP/dp). 

(Pilpi) = [n/(n + 1)IK and K1= P~/P:+~/" .  (11) 

or 

(10) 

For continuity of dP/dp and P/p at the core-envelope boundary we must have 

Thus, for the core corresponding to K = 1, the polytrope with index n = 1 will be 
matched for that value of r = b at which (Pi/pi) = 9 and so on. Once the value of r = b is 
known, we take for the initial values Pi, pi, mi, Pf and e*' and solve the coupled equations 
(6), (7) and (9) till pressure vanishes at r = a. The surface redshift 2, and central redshift 
2, for different polytropic indices n have been obtained. 

2.3. Envelope with density p = po(l  - rN/Ky) 

In the equation 

P = POU -rN/K?) 

po, N and K2 are constants. When we choose a particular value of N, the constants po 
and K2 can be evaluated from the continuity of p and dP/dp. In this case we have 
chosen the core-envelope boundary in accordance with Bondi (1964) by taking 

H = 2~ - ( u 2  + o2  + 6 ~ 0 )  0 (13) 

at r = b (here U = 47Pr2, u = m/r). Figure 1 shows (u-U) tracks for different values of a 
appearing in equation (8). The (u-v) tracks beyond H=O are also shown for the 
envelope in which density varies as p = po(1- rN/K?). At r = ri, we know the values of 
Pi, pi, mi, Pf and dP/dp= 1 (we have chosen the core with d P / d p = l  only). The 
continuity of pi, Pi and (dP/dp)i = 1 gives 

(14) I 1 / N  po =pi  - Pfri/N, K2 = (-Nry-lp0/Pi) . 
Once the values of constants po and KZ are known, the coupled equations ( 5 ) ,  (6), (7) 
and (12) can be solved numerically by taking pi, Pi, vi, mi and ri as initial values till the 
pressure vanishes at r = a. Out of all the values of N for which solutions have been 
obtained, only those values have been chosen which correspond to d P / d p s l  and 
non-negative density (that is, aN/KN < 1). It is noticed that the surface redshift is 
maximum for smaller values of N (for each value of a ) .  If we assume ps (the density at 
r = a )  = 2 x 1014 g cmP3 (Durgapal et a1 1979a) we obtain the mass of neutron stars. 
Figure 2 shows the variation of m/Mo with N and a. The maximum mass so obtained is 
4.7Mo, which is consistent with the results obtained by Brecher and Caporasso (1976). 
The variation of surface redshift with N and a has also been studied (figure 3). The 
maximum surface redshift comes out to be 0.86 for a = 0.3. 
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Figure 1. ( U - 0 )  tracks for envelope with varying density. a, N +  0; b, N = 0.6; c, N +  0; d, 
N = 2.30; e ,  N-* 0; f ,  N = 4.5; g, N = 0.5; h, N = 7.0.  
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Figure 2. Variation of mass with a and N. Figure 3. Variation of 2, with CY and N. 

3. Distribution function 

The distribution function, F, for a system with isotropic pressure and known internal 
solutions (that is, known values of p, P, e’, e*) is given by (Fackerell 1968) 

F ( x )  = - ( 4 / 3 r )  \ G”(b)(b -x)-*” db +( l / r )G(P) (P  - X ) - ~ ’ ’ H ( P  - x )  
P 

X 

+ ( 2 / 3 r ) G ’ ( P ) ( P  --x)-”’H(P - X )  + ( 4 / 3 r ) G ” ( P ) ( P  -x)-’” (15) 

whe,re 
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Here primes denote differentiation with respect to b and H(P - x)  is the Heaviside unit 
function, equal to 1 for x s p. For polytropes, Fackerell(l968) has shown that the value 
of F(x)  is positive if dP/dp s 1. 

For core solutions (dP/dp = K ;  K = 1 and $), if b = pc at the core-envelope 
boundary, the distribution function is given by (Durgapal et a1 1979b): 

(i) for K = 1 

F(x) = [ p s / 3 : / 6 ~ ( p  - - x ) ~ / ~ ] [ ~ R  - 2R4  - (15 - 204 + 842)] (17) 

F(x)=[psp: /12~(p  - ~ ) ~ / ~ ] [ 3 R ~ - ( 1 5 - 2 0 $ + 8 $ ~ ) ]  (18) 

(ii) for K = f 

where R = p/pc (the value of b at r = a for the envelope) and 4 = b/p,for the core. The 
value of F(x)  is positive in the core for all the cases discussed in this paper. 

4. Continuity of ey  and central redshift 

Equation (8) gives 

P' = Kp'.  

From equations ( 5 ) ,  (8) and (19) we obtain 

e-v/2 = (1 + Z )  = A x (P + P ) ~ / ( ~ + ' )  

where the value of the constant A is determined from the solution in the envelope. 

4.1. For polytropic envelope 

Using equations ( 5 )  and (9) it can easily be shown that 

= (1 + ~ / p ) " + '  eAa/2 

= (1 +P/p)""(l +Z,) 
where 

1 + Z, = eAa/2 = e-ua/2 = (1 - 2 ~ / a  1- ' j 2 ,  

and M = mass of the entire configuration. 

we obtain 
From continuity of ey at the core-envelope boundary and equations (20) and (21), 

A = (1 +Pi/pi)""(Pi + P , ) - ~ " ~  '') (1 +Zd, 

1 +z,= (l+P;/pl)"+'[(Pc+p,)/(Pi+pi)]K~(K'l) (1 +Zs) 

(23) 

and hence the central redshift Z, is given by 

= [(2n + l ) / (n  + l ) l " + ' [ ( ~ c + ~ c ) / ( ~ i  + ~ i ) 1 " ~ ( 1  + z )  
= [(4n +3)/(3n +~)I"+ ' - [ (P ,+~, ) / (P~ +z,) for K = f. 

for K = 1 

(24) 

4.2. For envelope with density p = p o ( 1 -  rN/Ky)  

The value of v in the core is chosen as given in equation (20). Equation ( 5 )  for v is 
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solved numerically along with equations (6), (7) and (12) till the pressure vanishes at 
r = a. For r = a we equate e"' with (1 - 2M/a) and determine the constant A appearing 
in equation (20). Then the redshift at any point can be evaluated. 

5. Stability under radial perturbations 

Not all the results obtained here may be equally important because some of the 
configurations are unstable under radial perturbations. The pulsational stability of the 
models has been obtained by using the method given by Chandrasekhar (1964) and 
Harrison et a1 (1965). A spherical configuration is pulsationally stable if the integral R 
is positive, that is 

fi = lo' fe(h+3v) /2  [9(P+p)(dP/dp) +4r(dP/dr) -r'(dP/dr)2/(P f p ) ]  

The square of the pulsational frequency is obtained by dividing the integral by the 
following integral T :  

T = joa e ( 3 A + v ) / 2  (P  + p)r4 dr. 

For the core solution dP/dp = 1, figure 4 shows the variation of w'/p,  with Z,  for 
different values of the polytropic index n. Figure 5 shows the variation of 2, with w' /p ,  
for the core equation dP/dp = 5 and n = 1. 

Configurations with envelopes with densityp = po(1- r"/KF) are found to be stable 
under radial perturbations. 

Figure 4. Variation of w2/p, with Z ,  for different 
polytropic indices for core equation dP/dp = 1. 

6. Result and discussion 

100 1 , 1 

Figure 5. Variation of wz/pc with Z ,  for n = 1 for 
core equation dP/dp = 4. 

(i) The solutions obtained in this paper are the most realistic two-density solutions 
because of the continuity of dP/dp along with pressure, density, ey and e'. The method 
developed here can be considered as an extension of the application of Bondi's method 
(1 964). 
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(ii) Taking ps = 2 X l O I 4  g cm-3 (Durgapal et a1 1979a), we have obtained a maxi- 
mum mass of 4.7Mo. The results are consistent with those obtained by Brecher and 
Caporasso (1976) who had assumed dP/dp = 1 for all values of p s a  2 x 1014 g ~ m - ~ .  In 
the present paper dP/dp = 1 for r s ri, but for r > ri the value of dP/dp decreases along 
with the density. 

(iii) These massive configurations are found to be pulsationally stable and they 
correspond to a maximum surface redshift of 2, = 0.86. This value is higher than that 
given by Bondi (1964). Though the method used here is more restrictive than that used 
by Bondi, yet we are getting a higher value of surface redshift. This is because of the fact 
that in Bondi’s model P s fp  for the entire configuration. However, Bondi’s model with 
a core equation, P = 03p ,  leads to a surface redshift of 0-75 (Das and Narlikar 1975) 
and a structure with equation of state dP/dp = 1 leads to a surface redshift of 0.91 
(Durgapal et a1 1979b). 

(iv) For polytropic envelopes, the central redshift 2, increases with cy and n (figure 
6). However, for higher n values the models ardunstable. 

(v) For extreme relativistic cores (dP/dp = 1) the structures with polytropic index 
n 2 0.5 are unstable. For n < 0.5 the stable configurations are possible for 2,s 4.75. 

(vi) For cores with dP/dp = $  we obtain stable structures with polytropic index 
n s 1.0. For n = 1, the structures are stable for ZC< 1.43. 

6.5 

2, 

L.5 ’ 

060 030 0 20 0 10 
ci 

Figure 6. Variation of Z ,  with a and n. 

Acknowledgments 

The authors acknolwedge their thanks to the UP State Observatory, Naini Tal, for 
providing library facilities. PSR acknowledges his thanks to UGC for financial assis- 
tance. 



3768 M C Durgapal, P S Rawat  and R Bannerji 

References 

Bondi H 1964 Proc. R. Soc. A 282 303 
Brecher K and Caporasso G 1976 Nature 259 377 
Chandrasekhar S 1964 Phys. Rev. Lett. 12 114,437 
Das P K 1976 Mon. Not. R. Astron. Soc. 177 343 
Das P K and Narlikar J V 1975 Mon. Not. R. Astron. Soc. 171 87 
Durgapal M C, Pande A K ana Pandey K 1979a J. Phys. A :  Math. Gen. 12 859 
Durgapal M C, Pandey K, Bannerji R and Pande A K 1980a J. Phys. A :  Math. Gen. 13 1729 
__ 1980b Mon. Not. R. Astron. Soc. 192 
Durgapal M C, Rawat P S and Bannerji R 1979b Proc. IVannual session of ASI, Naini Tal, India 
Durgapal M C, Rawat P S and Pandey K 1979c Proc. I V  annual session of ASI ,  Naini Tal, India 
Fackerell E D 1968 Astrophys. J. 153 643 
Harrison B K, Thorne K S, Wakano M and Wheeler J A 1965 Gravitational Theory and Gravitational 

Collapse (Chicago: University of Chicago Press) 


